ar X iv : c s / 03 02 03 6 v 1 [ cs . A I ] 2 5 Fe b 20 03 Constraint - based analysis of composite solvers ⋆

نویسنده

  • Evgueni Petrov
چکیده

Cooperative constraint solving is an area of constraint programming that studies the interaction between constraint solvers with the aim of discovering the interaction patterns that amplify the positive qualities of individual solvers. Automatisation and formalisation of such studies is an important issue of cooperative constraint solving. In this paper we present a finite set approximation for an analysis of composite solvers that integrates reasoning about the individual solvers and the processed data. The idea is to approximate this reasoning by resolution of set constraints on the finite sets representing the predicates that express all the necessary properties. This approximation is correct, but incomplete. We illustrate our approach by several examples from the area of numerical optimization and interval constraint programming.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 03 02 13 2 v 1 1 7 Fe b 20 03 2 - loop QCD corrections to B c - meson leptonic constant .

We present results for two-loop QCD corrections to the short distance coefficient that governs leptonic decay of Bc-meson. After brief discussion of the technics of asymptotic threshold expansion used to perform this calculation, we give comments on the numerical value of twoloop corrections and its impact on NRQCD description of Bc-meson bound state dynamics.

متن کامل

ar X iv : m at h / 03 02 20 2 v 1 [ m at h . C O ] 1 8 Fe b 20 03 PERIODIC DE BRUIJN TRIANGLES : EXACT AND ASYMPTOTIC RESULTS

We study the distribution of the number of permutations with a given periodic up-down sequence w.r.t. the last entry, find exponential generating functions and prove asymptotic formulas for this distribution. §

متن کامل

ar X iv : h ep - p h / 03 02 18 5 v 1 2 0 Fe b 20 03 Nonlinear corrections to the DGLAP equations ; looking for the saturation limits ∗

The effects of the first nonlinear corrections to the DGLAP equations are studied in light of the HERA data. Saturation limits are determined in the DGLAP+GLRMQ approach for the free proton and for the Pb nucleus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003